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Abstract

First, the general solution for transversely isotropic magnetoelectroelastic media is given concisely in form of five
harmonic functions. Second, the extended Boussinesq and Cerruti solutions for the magnetoelectroelastic half-space are
obtained in terms of elementary functions by utilizing this general solution. Third, the coupled fields for elliptical
Hertzian contact of magnetoelectroelastic bodies are solved in smooth and frictional cases. At last, the graphic results
are presented.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Because the stress concentration near the contact region, which is caused by inharmonious contact be-
tween the components, could cause the component failure. Therefore, it is necessary to make theoretical
analysis and accurate quantitative description of the behavior of solids under contact.

For purely elastic isotropic and transversely isotropic solids, since Hertz (1882) published his classic
article “On the contact of elastic solids”, the researches on the contact of elastic materials have been
conducted for more than 100 years, and a lot of scientists contributed to this area (Elliott, 1948, 1949;
Mindlin, 1949; Sneddon, 1951; Shield, 1951; Muskhelishvili, 1953; Green and Zerna, 1954; Willis, 1966,
1967; Conway et al., 1967, Conway and Farnham, 1967; Chen, 1969; Pan and Chou, 1976; Keer and
Mowry, 1979; Gladwell, 1980; Johnson, 1985; Fabrikant, 1989, 1991; Lin et al., 1991; Hanson, 1992a,b,
1994; Hanson and Puja, 1997).
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For transversely isotropic piezoelectric materials with electromechanical coupling, Fan et al. (1996)
studied the two-dimensional contact on a piezoelectric half-plane by using Stroh’s formalism, and gave the
solutions for loads acting on the boundary of an anisotropic piezoelectric half-plane. Ding et al. (1999) gave
the electroelastic field of elliptical Hertzian contact of transversely isotropic piezoelectric bodies. Ding et al.
(2000), Chen and Ding (1999), Chen et al. (1999), Chen (1999, 2000), Giannakopoulos (2000) and Sridhar
et al. (2000) studied a series of contact problems such as spherical contact, conical indentation and upright
or tilted circular flat punch on a transversely isotropic piezoelectric half-space, and obtained their elec-
troelastic fields.

To the author’s knowledge, no work has been done regarding the study of contact problem for media
possessing simultaneously piezoelectric, piezomagnetic and magnetoelectric effects, namely, magnetoelec-
troelastic solids. A wide class of crystals (Alshits et al., 1992) and the emerging composite materials that are
made from the piezoelectric media and piezomagnetic media (Huang and Kuo, 1997; Li and Dunn, 1998)
do have these mixed properties.

In the present paper, the general solution for transversely isotropic magnetoelectroelastic media is given
concisely in form of five harmonic functions. And then, the extended Boussinesq and Cerruti solutions for
the magnetoelectroelastic half-space are obtained in terms of elementary functions by utilizing this general
solution. Third, aiming at elliptical Hertzian contact of magnetoelectroelastic bodies, we solve for its
coupled fields in smooth and frictional cases by first evaluating the displacement functions and then dif-
ferentiating. The displacement functions can be obtained by integrating the extended Boussinesq or Cerruti
solutions in the contact region. At last, when only normal pressure is loaded, the elastic and electric fields in
the magnetoelectroelastic half-space are compared in the figures with those of corresponding piezoelectric
and purely elastic half-spaces. In addition, the magnetic field in the magnetoelectroelastic half-space are
also shown in the figures.

2. General solution for transversely isotropic magnetoelectroelastic media

As suggested by Huang and Kuo (1997), the governing equations for the theory of magnetoelectro-
elasticity are:

0ij; = —Jis (1)
Dj; = pr, (2)
B;; =0, (3)
0i; = Ciypen — ewiEr — diiHy, (4)
D; = einén + &iEy + GiHy, (5)
B; = dinen + giwEr + iy Hy, (6)
_ 1

& = 5 (uiy +10), (7)
E =-d,, (8)

I—Ii = _ql,i, (9)
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where o, &;, u;, E;, D;, H; and B; are the components of stress, strain, displacement, electric field, electric
displacement, magnetic field and magnetic induction, respectively; @ and ¥ are the electric potential and
magnetic potential, respectively; f; and p; are body force, and density of free charges, respectively; c;iu, ew;,
duj» &, g and p,; are elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic and magnetic con-
stants, respectively.

For the transversely isotropic magnetoelectroelastic media whose isotropic plane are perpendicular to the
z-axis of Cartesian coordinates (x,y,z), the dependent physical constants are elastic constants ¢y, ¢, ¢i13,
¢33, Ca4; Plezoelectric constants ey, es3, ejs; piezomagnetic constants dsi, ds3, ds; dielectric constants &, &33;
electromagnetic constants g;;, gs; and magnetic constants u,;, i;;. In addition, elastic constant
ces = (c11 — c12)/2. In the absence of body forces and free charges, substituting Eqs. (4)—(6) into Eqs. (1)-
(3), we obtain five equilibrium equations which are expressed in terms of u, v, w, ® and ¥. And then, based
on these equilibrium equations, Egs. (7)—(9) and the method which Ding et al. (1996) used to solve the
coupled equations of piezoelectric media, we can obtain the general solution of displacement, electric
potential and magnetic potential in terms of five displacement functions y; (j = 0, 1,2, 3,4), which satisfy,
respectively, the following equations:

0 o
- 44— = =0,1,2,3.4 1
oz 0y* Oz V=0 (7=0,1234) (10)

where z; = 5;z (=0, 1,2,3,4), so = \/ces/cas and s; (j = 1,2,3,4) are the four characteristic roots of an
eighth degree equation defined as follows and satisfy Re(s;) > 0

8

as’ — azs6 + a3s4

—aus* +as =0, (11)
where a; (k =1,2,3,4,5) are listed in Appendix A.

Using the constitutive equations (4)—(6), the general solutions for the stress, electric displacement and
magnetic induction expressed by five displacement functions are obtained. At this point, the coefficients in
front of derivatives of displacement functions with respect to coordinates are all products or linear com-
binations of material constants and characteristic roots. If expressions for the stress, electric displacement
and magnetic induction are substituted into five equilibrium equations, some relations among these coef-
ficients will be determined through consideration of Eq. (10). With these relations taken into account, the
general solutions for stress, electric displacement and magnetic induction can be obtained.

For the sake of convenience, the following notations are introduced:

U=u+iv=e"(u +iuy),

wi=w, w=90 w;=Y,

g1 = 0x + 0, =0, + 0y,

0y = 0, — 0, + 2it,, = e2%(a, — 0, + 2it,4), (12)
T =T it = (1. +itg), 04 =0,

T, =D, +iD, = €¢(D, +iD,), 0., = D.,

7.3 =B, +iB, = €¢(B, +1B,), 0.5 = B..

By virtue of Eq. (12), all components in Cartesian coordinates (x,y,z) and cylindrical coordinates (r, ¢, z)
can be transformed to each other easily. Then, the general solution can be concisely written as follows:
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) 4 4 alp
U=14 1‘?0"’2‘% ) Wrn:ZSjkmj§7

4 4
2 C66 (1)1/S = E Co6 — wljS w/a

1 j=1

~.

0y = 2ce64° (i‘//o + Z W;) ; (13)
GRS
Za)m/ Oz 2 = Zwmj/h//]v
Tm = (S()pml + Z S W 0z /> (m = 17273)7
=1

where

&2
Wi =5; (exsky; + exskay + dssks;) — c13, Py = caay

2
W = j(€%3k1/ — &33ky; — g33k3j) —e3, Py =€,

w3; = 57 (dsski; — gaskaj — tysks;) — day,  py = dis, (14)
B 0 0
ki = —= A=— = =1,2,3; .:17273747
3 O(] ? ax + 16 (m ./ )
and
o = —n + nzsf — ms_;‘, (15)
ﬁm/' = —N4y + }’l5msz- - n6msj + n7msj6' (m = 1; 2) 3)7

where ny, n,, n3, Myy, Msy, Mg, and my, are listed in Appendix B.
Thus, the general solutions for transversely isotropic magnetoelectroelastic media are obtained.

3. The solutions for point forces and point charge acting on the half-space of magnetoelectroelastic media
Considering a transversely isotropic magnetoelectroelastic half-space z > 0 where the surface z =0 is

parallel to the planes of isotropy, the extended Boussinesq and Cerruti solutions for point forces and point
charge acting on the surface of this half-space are derived in this section.

3.1. The extended Boussinesq solution for normal point force P, and point charge Q acting on the coordinate
origin

This is an axisymmetric problem. Functions , and ; can be assumed in the following form:
Yo=0, ¥,=4;,InR; (j=1,2,3,4), (16)

where R; = R; +z;, R; = |/r* +z; and r* = x* +)?, 4; are undetermined constants.
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Substituting Eq. (16) into Eq. (13), we have
4 . 4
x+1y 1
U= Z]:AJ R/Rj 5 W, = Z_I:Aijkij—j,
Jj= - Jj=
4 2 2 4
2 x+y (1 1 )
0'1:26‘(,6 A; T p— —+—* -2 A‘(2C66—CO1'S~)
]Z:; "IRR; R (Rj Rj) 12:1: ’ Y
4 4
1 1 1 1 1 1
2 2 :
gy, = 2066()} — X )ZAIW (RT—’—F) — 4IC66xyZAjR2-R’f (17‘1‘1?),
=1 7Y J j =1 7 J J

4 4 .
o= S U B e N Yo Y
zm Joomj R}’ zm Jo]Ermy R3 :

j=1 J j=1 j

The boundary conditions at z = 0 require
=0, 0.,=0 (m=1,2,3). (18)

Obviously, g, = 0 are satisfied automatically. Substituting Eq. (17) into 7,; = 0, we have

Z
37
Ly

4
Jj=1

Meanwhile, taking into consideration all the equilibrium conditions, apart from those already satisfied, for
the layer cut from the infinite magnetoelectroelastic half-space by the two planes z = 0 and z = 4. we have

+0oo —+00
/ / G, 3, ) dxdy + Py =0 (m =1,2,3), (20)
where
PIZPZ7 PZZ_Qa })3:07 (21)

Substituting ¢, in Eq. (17) into Eq. (20), we have

4

20 " wwd; =Py (m=1,2,3), (22)

Combining Egs. (19) and (22) to determine 4;, we obtain

Aj = 5j})z+}~jQ; (23)
where
o1 [si01 S0 s3013 sao ] (0
52 . 2717(011 277:6012 27'[6013 27'[(,014 1
53 N 271?(021 271?(022 27[6023 27'5(,024 0 ’
54 :27'50)31 271'6032 27'[(1)33 27'[6034: § 0 (24)
A S1W1 2012 3013 S4014 0
/12 27170)]1 271?6012 27'[6013 27'5(1)]4 0
13 N 27'56021 27'CCO22 27'[(1)23 27'[(024 -1
/‘{4 _27'5(1)31 27'((1)32 27'[(1)33 27'[(1)34 i 0
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Substituting Eq. (23) into Egs. (19) and (22), because P, and Q, can be arbitrary value, we can get following
identities:

4 4
Zslw1/5/:0’ ZSJQJIJ;LJZO,
= =

4 1 4
PEIE 0 > oy =0,
=1 oA

(25)
1

4 4

000 =0, > il = ——,
4 4
ZCL)3]5]:0, Za)g;u]:()
j=1 j=1

In order to study the contact problems of piezoelectric materials, the displacement w of a point on the
surface, which is at a distance of r from the origin, is given as follow.

4
Asik,;, KP.+L
w = js] lj = z+ Q7 (26)
=1 Rj r
where
4 4
K=Y sikd;, L= sk, (27)
=1 =1

Eq. (26) shows that the displacement w on the surface is in inverse proportion to r.

3.2. The extended Cerruti solution for tangential point forces P, and P, acting on the coordinate origin

Functions ¢, and y; can be assumed in the following form:

N Boy C()x

Ry Ry B

*+ *
R R

Yo ‘pj (j: 1’2’3’4)7 (28)

where By and B; are undetermined constants.
After some work parallel to Section 3.1, B; and C; can be determined as follow:

Bj :Pxnj’ Cj :P/V”j 02071727374)7 (29)
where
m S| SHW1p S3W13 S4M14 1
Ny = — ! M\ _ Tl on on o3 o4 0 (30)
0 27s0Cas” 3 2n | ) 23 W24 0f(’
Ny W3] W32 W33 W34 0
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3.3. The displacement functions for point forces and point charge acting on arbitrary point on the surface

When cylindrical coordinates (r, ¢, z) is adopted, and the point charge Q and three point forces P,, P, and
P, with their positive directions same as x-, y- and z-axes act on arbitrary point M (ry, ¢, 0) on the surface of
a transversely isotropic magnetoelectroelastic half-space, the displacement functions are listed as follows.

3.3.1. Point charge Q and normal point force P, are loaded
According to Eqgs. (16) and (23), we have

Wo(r, @250, o) = 0,

31
0y .70, 90) = (PO, + 04) InE] (j=1,2,3.4), e
where
R, =R +z, R;= 12+ 1% = 2rrgcos(¢p — ) +z]2- (32)
and constants ¢, and 4; are expressed in Eq. (24).
3.3.2. Tangential forces P, and P, are loaded
According to Egs. (28) and (29), we have
lpo(r, d)az;rOu(:bO) :lGO(PZ‘ _FA)X(ZO)7 (33)
lﬁj<1’,(f),z;l"o,(f)0):G_,‘(PZ‘-FFA)X(Z_/) 021727374)7
where
2(zj) =z IR, —R; (j=0,1,2,3,4), (34)
Gj:*’/’j/2 0:031323374)3 (35)

where P = P, + iP, is complex shear force, P and 4 are the complex conjugate of P and 4, respectively. i s R;
and R; are expressed in Egs. (30) and (32).

4. The contact region and contact loads for contact between a magnetoelectroelastic body and another body
under forces and charges

As shown in Fig. 1, body @ (which is magnetoelectroelastic solid or others such as piezoelectric and
purely elastic solid) and a magnetoelectroelastic body @ are pressed to each other by a pair of forces P..
Meanwhile, a pair of charges +Q and —Q locate at two points on the common normal line and in body ®
and body @, respectively.

Analysis can be taken same as Ding et al. (2000). Assume that

(1) The shape of contact region S is elliptical and its dimensions are sufficiently small compared with those
of the bodies ® and @, so we can regard them as two half-spaces. S is defined as follows:

X2 y2
(2) The normal electric displacement on the surface of bodies @ and @ is nonzero only inside the contact
region S. The contact pressure p(x,y) and electric displacement d(x, y) inside the contact region distri-
bute in following form.
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P;

Fig. 1. Contact of body @ and body @.

X\ 2 y\?
p(x7y)=p0\/1—(—) —(g)’ S .
a within §: = +>==1,
x\2 y az b2
dixy) =dn /1= (2) = (3),
where
13 1/3
5 2
5 23 5 2/3
frd P I = D 1N
and
3(, .8 3 3(,.8B v 3
—12(1+2)p =1\ 117 )K= D(e)V]—e? N
o R Ty . L

Cp = (K] + Kz)T[, Cqg = (Lz — LI)TE, Z = K“ —|— K12 —|—K21 + Kzz.
It is noted that

(1) For magnetoelectroelastic bodies, K, and L, can be obtained from Eq. (27) as follows:

4 4
Kn = (Zsjk1j5j> s Ln = (Zsjklj)uj> s
n J=1 n

=1

(39)

(40)

where subscripts n = 1,2 correspond to bodies ® and ®; when body @ is transversely isotropic
piezoelectric medium (the magnetic field is uncoupled from electroelastic field), according to Ding et al.

(2000), we have
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3 3
K] = Zsjk1j517 Ll = Zsjkl/;hj, (41)
= =

where s; and ky; (j = 1,2, 3) are defined in Eqgs. (32) and (41) of Ding et al. (1996). ¢; and 4; are defined

in Eq. (10) of Ding et al. (2000); when body @ is purely elastic transversely isotropic medium (the elastic

field is uncoupled from electroelastic field), L; = 0, and according to Ding et al. (1997), we have
(Sl + S2)C11

2’/[S1S2(C11£’33 — 6%3) ’

K = (42)

where c;; are elastic constants, s, (k = 1,2) are defined in Hu (1953); when body ® is purely elastic rigid
bOdy, L1 = 0, K1 =0.
(2) K1, K1 and K, K>, are the principal curvatures of bodies @ and @ at the original point.

(3) e=1/1— (b/a)* is the eccentricity of the ellipse S, and

n/2 d([) n/2 S
K(e) = —————— E(e)= \/1 —é?sin” pdo,
/0 \ll—ezsinzq) /0 ’ (43)
pioy K =E) B Kle)~D(e)
&2 A4 (1-e)D(e)’

5. The magnetoelectroelastic fields for Hertz contact

After getting the contact parameters in Section 4, we now further solve for the magnetoelectroelastic
fields for Hertz contact. For that it is useful if the elliptical coordinate system (&, {, ) is used. These elliptic
coordinates are determined as the roots of the polynomial equation in v given by

A oS S
atr a2t —e?)  a*(vr-1) ’

where 0 <7 <e* <{<1<E < .

(44

5.1. Solutions for smooth contact

The contact stress and electric displacement inside the contact region are assumed as

3P r2cos? ¢ r2sin’ ¢
p(l”, ¢) = \/1 - -

"~ 2nab a? b

(45)

d(r,¢) 0<r<C(¢), 0< ¢ < 2m,

30 l_rzcoszqﬁ_rzsinz(f)
"~ 2mab a? pr

where a and b are determined by Eq. (38), C(¢) is the border of the contact region. For the elliptical contact
region, C(¢) is in the following form

C(¢) = ab / \/ a?sin® ¢ + b2 cos? ¢. (46)

Substituting P, = p(ro, ¢g)rodrode, and Q = d(ry, ¢,)rodrode, into Eq. (31) and integrating the result
over 0<ry < C(¢y), 0< ¢y < 27, the displacement functions become
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‘po(”v (;')72) =0,

3(P.5; + OJ; . (47)
by(r2) = U Py 2y (j=12,3.9)
where
2 C(go) 2 cos? 72 sin’
’):/o /0 \/1_ 0 - P01 = ¢°1nR;r0dr0d¢o, (48)

where R; and R} are defined in Eq. (32).
Substituting Eq. (47) into Eq. (13) and using the partial derivatives of R(r, ¢,z;) given by Hanson and
Puja (1997), magnetoelectroelastic fields can be obtained as follows:

4
a3 Z P5 + Q;»,j {X 21191( ) — alll] +1y[Zj’l92(§]) — a[lz]},

J=1

4
= 53 S (B, + O )sihu(F (9y,€) — P01() —Pa(E) — Z05(8)),

Jj=1

6 4
a ZP(S —|—Q} 066_0)11 )2193(6)
j=1

(49)
oy = _6Lj‘° (P:3; + O2){az;[01 (&) — 02(E)] + XLy — s + @ (Ia — L) + 20},
. ! =1
Oon === Z (P.0; + Q) wnmzd3 (),
-
T == Z (P:0; + Qly)sjon 01 (&) +iy0a(&))],

where &; (j = 1,2, 3,4) are the complex elliptical coordinates which can be obtained by replacing z with z; in
Eq. (44) and satlsfy 1< Re(gt ) < 00; F(@;,e)(j = 1,2,3,4) are the incomplete elliptic integrals of the first
kind; ¢, (j =1,2,3,4) and /, (n =3,4,8,11,12) are listed in Appendix A of Hanson and Puja (1997); 9 (¢;)
(k=1,2,3;j=1,2,3,4) are same with wk(fj)(k =1,2,3) in Appendix A of Hanson and Puja (1997).

5.2. Solutions for friction contact

When bodies ® and @ are also subjected to tangential loading causing them to slide on the surfaces of
each other, it is assumed that the sliding friction could be determined by Coulomb friction law. Similarly,
substituting following equation into Eq. (33)

3P.f - rycos’ gy 13 sin® ¢,
2nab a? b?

P =

rodrodgy, f = fi +1f, (50)

and integrating the result over 0 <r) < C(¢,), 0< ¢, < 2m, the displacement functions become

holr,,2) = 32”200’41 ~ FAER( 6. 20) — 301, 2)]

%(r,qﬁ,Z)— (fA+fA)[ R(r, d,2;) = 3(r, ¢,2))];
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where R(r, ¢,z;) is defined in Eq. (48), and 3(7, ¢,z;) is

2 C(go) 2 cos? 2 sin®
\S(r,gb,zj):/o /0 \/1— 0 — o _ 7o 7 ¢0Rjr0dr0d(;’>0, (52)

where R; are expressed in Eq. (32). Substituting Eq. (51) into Eq. (13) and with using of the partial de-
rivatives of R(r, ¢, z;) and 3(r, ¢, z,) given by Hanson and Puja (1997), we obtain the magnetoelectroelastic
field as follows:

3P <
U= G 2 GASalaF (g 0) =xii(&) =7 0a(8) = Zis(&)]

+ Fla(@ = 2)0(&) + al — B)0:(&) — 30yl + aly? — )Ly
+ 2}’22113 — 2x22j18 + 3LZX2[9 + 2a22j(111 — [12) + i4xy(a[2 — Zj]4)]}
3P,
-5 2 Gl ~falaF(0,) — i1 (&) — 0a(80) — A0s(6)]
= flaa® = 2)91(&) + alz — a*(1 = )]0a(&o) = 3ay’Ly + a(y* — X)Ly
+ 2y22()13 — 2)(?22()18 + 361)(2[9 + 26122()(111 — 112) + i4xy(a]2 — 2014)]},

6P .
Wy = = > Grsiku{xfilz0i(&) — alu] + f,z92(E)) — al]},
j=1

4
o1 = PZ ZG/ Ce6 — wl/S Jef:01(&)) + 0928l
j=1
o) — 602213 Z G, {fa 01 (&) + v (&))] +f 2{3512(]9 — D) +3az;(Iy — L) — Lo + 3y216}

6C66P

+ 12{3&2(12 — 11) + 3azj([3 — 14) — 3X2[7 +y215}j| } Go{fa[xﬁl(fo) —+ lyﬁz(éo)]

—f[2{3a2(19 — 12) + 3612()(14 — Ig) _XZIIO + 3)/2[6} + 1;{3(12(12 — Il) + 3(12()([3 — 14)

— 33 —|—y215}} },

6P, &
Ozm = P Z Go[xfi01 (&) + yf,02(E))],
=
3P, ¢ r 2 2 2
Tn = 4 Z Gjsjon{fazjd3(&;) — flazi{D (&) — V2(E5)} — @ (In — ) +x7Iy — y° 15 + i2xyL] }
=1

{fazoV3(&o) + flazo{t (&) — V2(&0)} — @ (In — o) + XLy — y'Is + i2xyl4]},

(53)
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where F(¢p;,e) and & (j=0,1,2,3,4) are same as what they are in Eq. (49); ¢; (j =1,2,3,4) and I,
(n=1,2,3,...,12) are listed in Appendices A and B in Hanson and Puja (1997). And 9;(¢;) (k =1,2,3;

j=1,2,3,4) are same as those of Eq. (49).

5.3. Numerical results for smooth elliptical contact

Assume e = 3/5 and suppose only force P, acts on a body contacting with purely elastic, piezoelectric and
magnetoelectroelastic half-spaces, respectively, which are assumed to be with the same elastic, piezoelectric
and dielectric constants. The elastic and electric fields in the purely elastic, piezoelectric and magneto-
electroelastic half-spaces are compared to each other in Figs. 2-5 based on Hanson and Puja (1997); Ding
et al. (2000) and Eq. (49), respectively. In addition, the magnetic components in the magnetoelectroelastic
half-space are also shown in the figures. The material constants of magnetoelectroelastic half-space are

shown in Table 1.
Symbols in figures are defined as follows:

n Ox n O-)’ n 0: n 2! 1)2
Oy = —, 0y, =—, 0, =—, ="y Pm= )
Dm P Pm Dn nab
@ D D D P P
nq):_v an:_xu "D, = y7 nDz: 27 (pmziza sziz
b, D, > D, D, a x 102 a? x 1010’
v B B P. P,
n'P:_7 nBv:_xu "B _ya nBz:_z7 'szizu Bm:727
¥, B, ’ B, B, ax 10 a? x 1010

where 1) = (Omax — Omin)/2 is the maximum shear stress at a point.
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Fig. 2. Elastic field on the half-major axis of contact ellipse.
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Fig. 3. Electromagnetic field on the half-major axis of contact ellipse.

From above-mentioned figures, we can see that the elastic and electric fields in the magneto-

electroelastic half-space are similar with those of corresponding piezoelectric and purely elastic half-
space.

L.

For the three kinds of half-space, the points on the major axis of the elliptical contact region are nearly
all in the state of being pressed at three orthogonal directions. The greatest value of normal stresses for
magnetoelectroelastic half-space is larger than that of corresponding piezoelectric and purely elastic half-
spaces, and all occur at the center of contact ellipse.

. The greatest maximum shear stress in magnetoelectroelastic half-space is "t; = 0.4989p,, and occurs in

the symmetric axis at the depth of z = 0.46a. The greatest maximum shear stress in piezoelectric half-
space 1s "t; = 0.5006p,, and occurs in the symmetric axis at the depth of z = 0.44a. The greatest maxi-
mum shear stress in purely elastic half-space is "7, = 0.4527p,, and also occurs in the symmetric axis
at the depth of z = 0.444.

. The greatest electric displacement D, in magnetoelectroelastic half-space is "D, = —0.2159D,, and occurs

in the symmetric axis at the depth of z = 0.36a. The greatest electric displacement D, in piezoelectric half-
space is "D, = —0.2177D,, and occurs in the symmetric axis at the depth of z = 0.36a. The D, reach the
peak values of "D, = 0.6178D,, and "D, = 0.6211D,, at the point of (a,0,0) of magnetoelectroelastic and
piezoelectric half-spaces, respectively.

. The greatest magnetic induction "B, in magnetoelectroelastic half-space is "B, = 1.9566B,, and occurs in

the symmetric axis at the depth of z = 0.02a. The B, reach the peak values of "B, = 7.5141B,, at the point
of (a,0,0) of magnetoelectroelastic half-spaces.
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Fig. 4. Elastic field on the symmetric axis.

In additions, calculations also show us that there are "¢, = "1, = "1, = 0 on the border of elliptical
contact region and the maximum and minimum principle stresses in the xoy plane are contrary sign
and equal in values, so every point on this border is actually in the state of pure shear for three kinds of
half-spaces. The stress distributions on the minor axis of contact ellipse is similar to those on the major axis
for three kinds of half-spaces and so does the electromagnetic field on the minor axis for magnetoelec-
troelastic and piezoelectric half-spaces. In addition, there are "D, ="D.=0 on the major axis,
"D, ="D, =0and "B, ="B, = 0 on the minor axis, "D, = 0 and "B, = 0 on the elliptical contact border and
"D, ="D, =0 and "B, ="B, = 0 on the symmetric axis for magnetoelectroelastic and piezoelectric half-
spaces.
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Table 1

Physical constants of magnetoelectroelastic material (refer to Li (2000))
11 Ci2 €13 C33
2.86 x 10" 1.73 x 10" 1.70 x 10" 2.695 x 10!
eis €3] €33 &1
11.6 -4.4 18.6 8.0 x 107"
dys d3) ds3 R
550 580.3 699.7 -5.90 x 1074

Ca4 811

4.53 x 10'° 5.0 x 10712
€33 833

9.3x 1071 3.0x 10712
H33

1.57 x 107*

Units: elastic constants, N m~2; piezoelectric constants, Cm~>

electromagnetic constants, NsV~! C~!'; magnetic constants, Ns?> C2.

Appendix A

ar(k=1,2,3,4,5) in Eq. (11) are defined as follows:

; piezomagnetic constants, N A~! m~!; dielectric constants, C>? N~! m~2;

s
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ay = caafes(eaapiss — g§3) — 2engnds + #33653 + 833“’323],
ay = cnles(easttyy — 833) — 2€3383dss + [33€35 + endis] + caalcas(enspiny — €35)
+ c33(entyy + ety — 2211833) — 2e15833dz3 — 2e33(giidsz + g3sdis)
+ (€33 + 2us3e15e33) + (e11d3 + 2e33disds3)]
— (c13 4 caa)[(c13 + cas) (e33133 — £33) + (€15 + e31) (e3puzs — d33gis)
— (dis + d31)(e33g33 — dzze33)] — (ers + ear)[(c13 + cas) (e33p135 — g33d033)
— (e1s +e31)(expss + d323) + (dis + d31)(c33833 + d33e33)]
— (dis + ds1)[(c13 + caa)(—e33833 + €33d33) + (e15 + e31)(c33833 + essds3)
— (dis + d31)(cx3e33 + €33)],
as = cipfcaa(e33ptyy — g§3) + c33(ennpizy + 33y — 2811833) — 2e15833d53
— 2ex3(guidss + gudis) + (€3, + 21sseises) + (e11dy; + 2e33disdss )]
+ casleas(En sy + E3pyy — 2€1183) + cxs(enpy — &) — 2e1s(gndss + gadis)
— 2e33gndis + 2py e15e33 + ,u33€%5 + 2en1disdzs + 833d125]
— (c13 + caa)[(e13 + caa) (1133 + E33pyy — 2g183) + (er1s + e3r)
X (erspty3 + exsfly — disgss — dzzgn) — (dis + dar)(e1sgas + enngn — disess — dazen)] (A1)
— (e1s +e31)[(c13 + caa)(erspiss + ey — gridss — gaadhs)
— (e15 + e31)(caapiss + e33puyy + 2disdss) + (dis + dan)
X (caag33 + 33811 + disess + dyzens)]
— (dis +d31)[(c13 + caa)(—e15g33 — e3gn + endss + essdss)
+ (e1s + e31)(caagsz + c33gi1 + eisdsy + exsdis)
— (dis + d31)(casss + cxzenn + 2ersess)],
as = cnlcaa(en sy + esspy — 2811833) + ealenpy — gfl) — 2e15(g11dss + ga3dis)
— 2exsgiidis + 21y €15e3 + pysels + 2endisdss + e33dys)
+ caslcaa (e, — g1)) — 2eisgudis + wyiels + endys)
— (e1s + can)(ers + caa) (enipyy — g1y) + (ers + ez1)(erspy — disgin)
— (dis +d31)(e1sgin — disen)] — (ers + ear)[(c13 + cas)(e1spyy — guidis)
— (eys + e31) (caapty + d125) + (dis + d31) (caagni + disers)]
— (dis + d31)[(c13 + caa)(—ersgn + endis) + (ers + es1)(casg + eisdis)
— (dis + da1) (canenn + 6%5)]7

as = cyyfcas(en gy — gfl) — 2e15g1dis + Hne%s + 311d125]-
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Appendix B
ny, Ny, N3, Map, Msy, Mey and mq, (m =1,2,3) in Eq. (15) are defined as follows:

ny = (c13 + caa) (o1t — g%l) + (e15 + ear)(eispy; — gndis) — (dis + dar) (ersgu — ends),
ny = (c13 + caa)(E11 1433 + €334y — 2811833) + (€15 + e31)(erspis3 + ety — gudsz — gaadis)
— (dis + d31)(e15833 + easg — endsy — exdhs),
n3 = (c13 + caa) (&3333 — gig) + (e1s + e31)(esstizs — g33daz) — (dis + dai)(exsgas — exdas),
ny = cii(en iy —gﬁ),
nsi = cni(entiss + exsiyy — 2811€3) + caa(eny — ghy) + i (es +exn)’ + en (dis + dyy )
—2g1i(e1s + e31)(dis + d31),
ne1 = ci1(&33flz3 — g§3) + caa(er1pizy + ezl — 2g11833) + paz(ers + 931)2 + e33(dis + d31)2
—2gx(e1s + e3)(dis + da),
ny1 = ca(Essflss — g§3),
ny = cii(eisyy; — gudis), (B.1)
nsy = cyy(eisplas + essply — grdss — g3dis) + caslerspy; — gnds)
— (e1s + e31)[py (c13 + cas) + dis(dis + dar)] + (dis + d1)[g11(c13 + caa) + ers(dis + dar )],
ney = cri(essplyy — g33dz3) + caalersplyy + esspyyy — gndsz — g33ds)
— (e1s + e31)[us3(c13 + cas) + d33(dis + dar)] + (dis + d31)[g33(c13 + caa) + e33(dis + day )],
n7y = cas(esslyy — g33dsz),
ng3 = cii(—eisgu + ends),
11(—ei1sg3 — ensgn + endss + eadis) + cas(—eisgn + ends)
+ (e15 + ea1)[gii(c13 + caa) + dis(ers + ear)] — (dis + da1)[en1(c13 + caa) + ers5(ers + ear)],
ne3 = c11(—e33833 + e33ds3) + caa(—e1sg33 — exngu + ends + exds)
+ (e15 + ea1)[gas(c13 + casa) + daz(ers + ear)] — (dis + dar)[ess(c1s + caa) + ess(ers + ear)],

ny3 = cu(—exgs + exdss).

|
o

ns3 =
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