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Abstract

First, the general solution for transversely isotropic magnetoelectroelastic media is given concisely in form of five

harmonic functions. Second, the extended Boussinesq and Cerruti solutions for the magnetoelectroelastic half-space are

obtained in terms of elementary functions by utilizing this general solution. Third, the coupled fields for elliptical

Hertzian contact of magnetoelectroelastic bodies are solved in smooth and frictional cases. At last, the graphic results

are presented.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Because the stress concentration near the contact region, which is caused by inharmonious contact be-

tween the components, could cause the component failure. Therefore, it is necessary to make theoretical

analysis and accurate quantitative description of the behavior of solids under contact.

For purely elastic isotropic and transversely isotropic solids, since Hertz (1882) published his classic
article ‘‘On the contact of elastic solids’’, the researches on the contact of elastic materials have been

conducted for more than 100 years, and a lot of scientists contributed to this area (Elliott, 1948, 1949;

Mindlin, 1949; Sneddon, 1951; Shield, 1951; Muskhelishvili, 1953; Green and Zerna, 1954; Willis, 1966,

1967; Conway et al., 1967; Conway and Farnham, 1967; Chen, 1969; Pan and Chou, 1976; Keer and

Mowry, 1979; Gladwell, 1980; Johnson, 1985; Fabrikant, 1989, 1991; Lin et al., 1991; Hanson, 1992a,b,

1994; Hanson and Puja, 1997).
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For transversely isotropic piezoelectric materials with electromechanical coupling, Fan et al. (1996)

studied the two-dimensional contact on a piezoelectric half-plane by using Stroh�s formalism, and gave the
solutions for loads acting on the boundary of an anisotropic piezoelectric half-plane. Ding et al. (1999) gave

the electroelastic field of elliptical Hertzian contact of transversely isotropic piezoelectric bodies. Ding et al.
(2000), Chen and Ding (1999), Chen et al. (1999), Chen (1999, 2000), Giannakopoulos (2000) and Sridhar

et al. (2000) studied a series of contact problems such as spherical contact, conical indentation and upright

or tilted circular flat punch on a transversely isotropic piezoelectric half-space, and obtained their elec-

troelastic fields.

To the author�s knowledge, no work has been done regarding the study of contact problem for media
possessing simultaneously piezoelectric, piezomagnetic and magnetoelectric effects, namely, magnetoelec-

troelastic solids. A wide class of crystals (Alshits et al., 1992) and the emerging composite materials that are

made from the piezoelectric media and piezomagnetic media (Huang and Kuo, 1997; Li and Dunn, 1998)
do have these mixed properties.

In the present paper, the general solution for transversely isotropic magnetoelectroelastic media is given

concisely in form of five harmonic functions. And then, the extended Boussinesq and Cerruti solutions for

the magnetoelectroelastic half-space are obtained in terms of elementary functions by utilizing this general

solution. Third, aiming at elliptical Hertzian contact of magnetoelectroelastic bodies, we solve for its

coupled fields in smooth and frictional cases by first evaluating the displacement functions and then dif-

ferentiating. The displacement functions can be obtained by integrating the extended Boussinesq or Cerruti

solutions in the contact region. At last, when only normal pressure is loaded, the elastic and electric fields in
the magnetoelectroelastic half-space are compared in the figures with those of corresponding piezoelectric

and purely elastic half-spaces. In addition, the magnetic field in the magnetoelectroelastic half-space are

also shown in the figures.

2. General solution for transversely isotropic magnetoelectroelastic media

As suggested by Huang and Kuo (1997), the governing equations for the theory of magnetoelectro-
elasticity are:

rij;j ¼ �fi; ð1Þ

Dj;j ¼ qf ; ð2Þ

Bj;j ¼ 0; ð3Þ

rij ¼ Cijkl�eekl � ekijEk � dkijHk; ð4Þ

Di ¼ eikl�eekl þ eikEk þ gikHk; ð5Þ

Bi ¼ dikl�eekl þ gikEk þ likHk; ð6Þ

�eeij ¼
1

2
ðui;j þ uj;iÞ; ð7Þ

Ei ¼ �U;i; ð8Þ

Hi ¼ �W;i; ð9Þ
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where rij, �eeij, ui, Ei, Di, Hi and Bi are the components of stress, strain, displacement, electric field, electric
displacement, magnetic field and magnetic induction, respectively; U and W are the electric potential and
magnetic potential, respectively; fi and qf are body force, and density of free charges, respectively; cijkl, ekij,
dkij, eij, gij and lij are elastic, piezoelectric, piezomagnetic, dielectric, electromagnetic and magnetic con-
stants, respectively.

For the transversely isotropic magnetoelectroelastic media whose isotropic plane are perpendicular to the

z-axis of Cartesian coordinates ðx; y; zÞ, the dependent physical constants are elastic constants c11, c12, c13,
c33, c44; piezoelectric constants e31, e33, e15; piezomagnetic constants d31, d33, d15; dielectric constants e11, e33;
electromagnetic constants g11, g33 and magnetic constants l11, l33. In addition, elastic constant

c66 ¼ ðc11 � c12Þ=2. In the absence of body forces and free charges, substituting Eqs. (4)–(6) into Eqs. (1)–
(3), we obtain five equilibrium equations which are expressed in terms of u, v, w, U and W. And then, based
on these equilibrium equations, Eqs. (7)–(9) and the method which Ding et al. (1996) used to solve the

coupled equations of piezoelectric media, we can obtain the general solution of displacement, electric

potential and magnetic potential in terms of five displacement functions wj ðj ¼ 0; 1; 2; 3; 4Þ, which satisfy,
respectively, the following equations:

o2

ox2

 
þ o2

oy2
þ o2

oz2j

!
wj ¼ 0 ðj ¼ 0; 1; 2; 3; 4Þ; ð10Þ

where zj ¼ sjz (j ¼ 0; 1; 2; 3; 4), s0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c66=c44

p
and sj (j ¼ 1; 2; 3; 4) are the four characteristic roots of an

eighth degree equation defined as follows and satisfy ReðsjÞ > 0

a1s8 � a2s6 þ a3s4 � a4s2 þ a5 ¼ 0; ð11Þ

where ak (k ¼ 1; 2; 3; 4; 5) are listed in Appendix A.
Using the constitutive equations (4)–(6), the general solutions for the stress, electric displacement and

magnetic induction expressed by five displacement functions are obtained. At this point, the coefficients in

front of derivatives of displacement functions with respect to coordinates are all products or linear com-
binations of material constants and characteristic roots. If expressions for the stress, electric displacement

and magnetic induction are substituted into five equilibrium equations, some relations among these coef-

ficients will be determined through consideration of Eq. (10). With these relations taken into account, the

general solutions for stress, electric displacement and magnetic induction can be obtained.

For the sake of convenience, the following notations are introduced:

U ¼ uþ iv ¼ ei/ður þ iu/Þ;
w1 ¼ w; w2 ¼ U; w3 ¼ W;

r1 ¼ rx þ ry ¼ rr þ r/;

r2 ¼ rx � ry þ 2isxy ¼ e2i/ðrr � r/ þ 2isr/Þ;
sz1 ¼ sxz þ isyz ¼ ei/ðsrz þ is/zÞ; rz1 ¼ rz;

sz2 ¼ Dx þ iDy ¼ ei/ðDr þ iD/Þ; rz2 ¼ Dz;

sz3 ¼ Bx þ iBy ¼ ei/ðBr þ iB/Þ; rz3 ¼ Bz:

ð12Þ

By virtue of Eq. (12), all components in Cartesian coordinates ðx; y; zÞ and cylindrical coordinates ðr;/; zÞ
can be transformed to each other easily. Then, the general solution can be concisely written as follows:
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U ¼ D iw0

 
þ
X4
j¼1

wj

!
; wm ¼

X4
j¼1

sjkmj
owj

ozj
;

r1 ¼ 2
X4
j¼1

ðc66 � x1js2j Þ
o2wj

oz2j
¼ �2

X4
j¼1

ðc66 � x1js2j ÞKwj;

r2 ¼ 2c66D2 iw0

 
þ
X4
j¼1

wj

!
;

rzm ¼
X4
j¼1

xmj
o2wj

oz2j
¼ �

X4
j¼1

xmjKwj;

szm ¼ D s0qmi
ow0
oz0

 
þ
X4
j¼1

sjxmj
owj

ozj

!
ðm ¼ 1; 2; 3Þ;

ð13Þ

where

x1j ¼ s2j ðc33k1j þ e33k2j þ d33k3jÞ � c13; q1 ¼ c44;

x2j ¼ s2j ðe33k1j � e33k2j � g33k3jÞ � e31; q2 ¼ e15;

x3j ¼ s2j ðd33k1j � g33k2j � l33k3jÞ � d31; q3 ¼ d15;

kmj ¼
bmj
ajs2j

; D ¼ o

ox
þ i o

oy
ðm ¼ 1; 2; 3; j ¼ 1; 2; 3; 4Þ;

ð14Þ

and

aj ¼ �n1 þ n2s2j � n3s4j ;

bmj ¼ �n4m þ n5ms2j � n6ms4j þ n7ms6j ðm ¼ 1; 2; 3Þ;
ð15Þ

where n1, n2, n3, m4m, m5m, m6m and m7m are listed in Appendix B.
Thus, the general solutions for transversely isotropic magnetoelectroelastic media are obtained.

3. The solutions for point forces and point charge acting on the half-space of magnetoelectroelastic media

Considering a transversely isotropic magnetoelectroelastic half-space zP 0 where the surface z ¼ 0 is
parallel to the planes of isotropy, the extended Boussinesq and Cerruti solutions for point forces and point

charge acting on the surface of this half-space are derived in this section.

3.1. The extended Boussinesq solution for normal point force Pz and point charge Q acting on the coordinate

origin

This is an axisymmetric problem. Functions w0 and wj can be assumed in the following form:

w0 ¼ 0; wj ¼ Aj lnR�
j ðj ¼ 1; 2; 3; 4Þ; ð16Þ

where R�
j ¼ Rj þ zj, Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2j

q
and r2 ¼ x2 þ y2, Aj are undetermined constants.
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Substituting Eq. (16) into Eq. (13), we have

U ¼
X4
j¼1

Aj
xþ iy
RjR�

j
; wm ¼

X4
j¼1

Ajsjkmj
1

Rj
;

r1 ¼ 2c66
X4
j¼1

Aj
2

RjR�
j

"
� x2 þ y2

R2j R
�
j

1

Rj

 
þ 1

R�
j

!#
� 2

X4
j¼1

Ajð2c66 � x1js2j Þ
zj
R3j

;

r2 ¼ 2c66ðy2 � x2Þ
X4
j¼1

Aj
1

R2j R
�
j

1

Rj

 
þ 1

R�
j

!
� 4ic66xy

X4
j¼1

Aj
1

R2j R
�
j

1

Rj

 
þ 1

R�
j

!
;

rzm ¼ �
X4
j¼1

Ajxmj
zj
R3j

; szm ¼ �
X4
j¼1

Ajsjxmj
xþ iy
R3j

:

ð17Þ

The boundary conditions at z ¼ 0 require
sz1 ¼ 0; rzm ¼ 0 ðm ¼ 1; 2; 3Þ: ð18Þ

Obviously, rzm ¼ 0 are satisfied automatically. Substituting Eq. (17) into sz1 ¼ 0, we have
X4
j¼1

sjx1jAj ¼ 0: ð19Þ

Meanwhile, taking into consideration all the equilibrium conditions, apart from those already satisfied, for

the layer cut from the infinite magnetoelectroelastic half-space by the two planes z ¼ 0 and z ¼ h. we haveZ þ1

�1

Z þ1

�1
rzmðx; y; hÞdxdy þ Pm ¼ 0 ðm ¼ 1; 2; 3Þ; ð20Þ

where

P1 ¼ Pz; P2 ¼ �Q; P3 ¼ 0; ð21Þ
Substituting rzm in Eq. (17) into Eq. (20), we have

2p
X4
j¼1

xmjAj ¼ Pm ðm ¼ 1; 2; 3Þ; ð22Þ

Combining Eqs. (19) and (22) to determine Aj, we obtain

Aj ¼ djPz þ kjQ; ð23Þ

where

d1
d2
d3
d4

8>>><
>>>:

9>>>=
>>>;

¼

s1x11 s2x12 s3x13 s4x14
2px11 2px12 2px13 2px14
2px21 2px22 2px23 2px24
2px31 2px32 2px33 2px34

2
6664

3
7775

�1
0

1

0

0

8>>><
>>>:

9>>>=
>>>;
;

k1
k2
k3
k4

8>>><
>>>:

9>>>=
>>>;

¼

s1x11 s2x12 s3x13 s4x14
2px11 2px12 2px13 2px14
2px21 2px22 2px23 2px24
2px31 2px32 2px33 2px34

2
6664

3
7775

�1
0

0

�1
0

8>>><
>>>:

9>>>=
>>>;
:

ð24Þ
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Substituting Eq. (23) into Eqs. (19) and (22), because P0 and Q0 can be arbitrary value, we can get following
identities:

X4
j¼1

sjx1jdj ¼ 0;
X4
j¼1

sjx1jkj ¼ 0;

X4
j¼1

x1jdj ¼
1

2p
;
X4
j¼1

x1jkj ¼ 0;

X4
j¼1

x2jdj ¼ 0;
X4
j¼1

x2jkj ¼ � 1

2p
;

X4
j¼1

x3jdj ¼ 0;
X4
j¼1

x3jkj ¼ 0:

ð25Þ

In order to study the contact problems of piezoelectric materials, the displacement w of a point on the
surface, which is at a distance of r from the origin, is given as follow.

w ¼
X4
j¼1

Ajsjk1j
Rj

¼ KPz þ LQ
r

; ð26Þ

where

K ¼
X4
j¼1

sjk1jdj; L ¼
X4
j¼1

sjk1jkj; ð27Þ

Eq. (26) shows that the displacement w on the surface is in inverse proportion to r.

3.2. The extended Cerruti solution for tangential point forces Px and Py acting on the coordinate origin

Functions w0 and wj can be assumed in the following form:

w0 ¼
B0y
R�
0

� C0x
R�
0

; wj ¼
Bjx
R�
j
þ Cjy
R�
j

ðj ¼ 1; 2; 3; 4Þ; ð28Þ

where B0 and Bj are undetermined constants.
After some work parallel to Section 3.1, Bj and Cj can be determined as follow:

Bj ¼ Pxgj; Cj ¼ Pygj ðj ¼ 0; 1; 2; 3; 4Þ; ð29Þ

where

g0 ¼ � 1

2ps0c44
;

g1
g2
g3
g4

8>><
>>:

9>>=
>>; ¼ 1

2p

s1x11 s2x12 s3x13 s4x14
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34

2
664

3
775

�1
1

0

0

0

8>><
>>:

9>>=
>>;; ð30Þ
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3.3. The displacement functions for point forces and point charge acting on arbitrary point on the surface

When cylindrical coordinates ðr;/; zÞ is adopted, and the point charge Q and three point forces Px, Py and
Pz with their positive directions same as x-, y- and z-axes act on arbitrary point Mðr0;/0; 0Þ on the surface of
a transversely isotropic magnetoelectroelastic half-space, the displacement functions are listed as follows.

3.3.1. Point charge Q and normal point force Pz are loaded
According to Eqs. (16) and (23), we have

w0ðr;/; z; r0;/0Þ ¼ 0;
wjðr;/; z; r0;/0Þ ¼ ðPzdj þ QkjÞ lnR�

j ðj ¼ 1; 2; 3; 4Þ; ð31Þ

where

R�
j ¼ Rj þ zj; Rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r20 � 2rr0 cosð/ � /0Þ þ z2j

q
ð32Þ

and constants dj and kj are expressed in Eq. (24).

3.3.2. Tangential forces Px and Py are loaded
According to Eqs. (28) and (29), we have

w0ðr;/; z; r0;/0Þ ¼ iG0ðP �DD � PDÞvðz0Þ;
wjðr;/; z; r0;/0Þ ¼ GjðP �DD þ PDÞvðzjÞ ðj ¼ 1; 2; 3; 4Þ;

ð33Þ

where

vðzjÞ ¼ zj lnR�
j � Rj ðj ¼ 0; 1; 2; 3; 4Þ; ð34Þ

Gj ¼ �gj=2 ðj ¼ 0; 1; 2; 3; 4Þ; ð35Þ

where P ¼ Px þ iPy is complex shear force, P and �DD are the complex conjugate of P and D, respectively. gj, Rj
and R�

j are expressed in Eqs. (30) and (32).

4. The contact region and contact loads for contact between a magnetoelectroelastic body and another body

under forces and charges

As shown in Fig. 1, body (which is magnetoelectroelastic solid or others such as piezoelectric and
purely elastic solid) and a magnetoelectroelastic body are pressed to each other by a pair of forces Pz.
Meanwhile, a pair of charges þQ and �Q locate at two points on the common normal line and in body
and body , respectively.

Analysis can be taken same as Ding et al. (2000). Assume that

(1) The shape of contact region S is elliptical and its dimensions are sufficiently small compared with those
of the bodies and , so we can regard them as two half-spaces. S is defined as follows:

S :
x2

a2
þ y2

b2
¼ 1: ð36Þ

(2) The normal electric displacement on the surface of bodies and is nonzero only inside the contact

region S. The contact pressure pðx; yÞ and electric displacement dðx; yÞ inside the contact region distri-
bute in following form.
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pðx; yÞ ¼ p0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

a

� �2
� y

b

� �2r
;

dðx; yÞ ¼ d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

a

� �2
� y

b

� �2r
;

within S :
x2

a2
þ y2

b2
¼ 1; ð37Þ

where

a ¼ na
cpPz þ cdQ

R

� �1=3
; b ¼ nb

cpPz þ cdQ
R

� �1=3
;

p0 ¼ npPz
R

cpPz þ cdQ

� �2=3
; d0 ¼ npQ

R
cpPz þ cdQ

� �2=3 ð38Þ

and

na ¼
3

p
1

��
þ B
A

�
DðeÞ

�1=3
; nb ¼

3

p
1

��
þ B
A

�
KðeÞ½ � DðeÞ	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p �1=3
; np ¼

3

2pnanb
;

cp ¼ ðK1 þ K2Þp; cd ¼ ðL2 � L1Þp; R ¼ K11 þ K12 þ K21 þ K22:

ð39Þ

It is noted that

(1) For magnetoelectroelastic bodies, Kn and Ln can be obtained from Eq. (27) as follows:

Kn ¼
X4
j¼1

sjk1jdj

 !
n

; Ln ¼
X4
j¼1

sjk1jkj

 !
n

; ð40Þ

where subscripts n ¼ 1; 2 correspond to bodies and ; when body is transversely isotropic

piezoelectric medium (the magnetic field is uncoupled from electroelastic field), according to Ding et al.
(2000), we have

Fig. 1. Contact of body and body .
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K1 ¼
X3
j¼1

sjk1jdj; L1 ¼
X3
j¼1

sjk1jkj; ð41Þ

where sj and k1j (j ¼ 1; 2; 3) are defined in Eqs. (32) and (41) of Ding et al. (1996). dj and kj are defined
in Eq. (10) of Ding et al. (2000); when body is purely elastic transversely isotropic medium (the elastic

field is uncoupled from electroelastic field), L1 ¼ 0, and according to Ding et al. (1997), we have

K1 ¼
ðs1 þ s2Þc11

2ps1s2ðc11c33 � c213Þ
; ð42Þ

where cij are elastic constants, sk ðk ¼ 1; 2Þ are defined in Hu (1953); when body is purely elastic rigid

body, L1 ¼ 0, K1 ¼ 0.
(2) K11, K12 and K21, K22 are the principal curvatures of bodies and at the original point.

(3) e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb=aÞ2

q
is the eccentricity of the ellipse S, and

KðeÞ ¼
Z p=2

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 u

q ; EðeÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2 sin2 udu

q
;

DðeÞ ¼ KðeÞ � EðeÞ
e2

;
B
A
¼ KðeÞ � DðeÞ

ð1� e2ÞDðeÞ :

ð43Þ

5. The magnetoelectroelastic fields for Hertz contact

After getting the contact parameters in Section 4, we now further solve for the magnetoelectroelastic

fields for Hertz contact. For that it is useful if the elliptical coordinate system ðn; f; gÞ is used. These elliptic
coordinates are determined as the roots of the polynomial equation in t given by

x2

a2t2
þ y2

a2ðt2 � e2Þ þ
z2

a2ðt2 � 1Þ ¼ 1; ð44Þ

where 06 g6 e26 f6 16 n < 1.

5.1. Solutions for smooth contact

The contact stress and electric displacement inside the contact region are assumed as

pðr;/Þ ¼ 3Pz
2pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 cos2 /

a2
� r2 sin2 /

b2

s
;

dðr;/Þ ¼ 3Q
2pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2 cos2 /

a2
� r2 sin2 /

b2

s
; 06 r6Cð/Þ; 06/ < 2p;

ð45Þ

where a and b are determined by Eq. (38), Cð/Þ is the border of the contact region. For the elliptical contact
region, Cð/Þ is in the following form

Cð/Þ ¼ ab
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 sin2 / þ b2 cos2 /

q!
: ð46Þ

Substituting Pz ¼ pðr0;/0Þr0 dr0 d/0 and Q ¼ dðr0;/0Þr0 dr0 d/0 into Eq. (31) and integrating the result
over 06 r06Cð/0Þ, 06/06 2p, the displacement functions become
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w0ðr;/; zÞ ¼ 0;

wjðr;/; zÞ ¼
3ðPzdj þ QkjÞ

2pab
Rðr;/; zjÞ ðj ¼ 1; 2; 3; 4Þ;

ð47Þ

where

Rðr;/; zjÞ ¼
Z 2p

0

Z Cð/0Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20 cos2 /0

a2
� r20 sin

2 /0
b2

s
lnR�

j r0 dr0 d/0; ð48Þ

where Rj and R�
j are defined in Eq. (32).

Substituting Eq. (47) into Eq. (13) and using the partial derivatives of Rðr;/; zjÞ given by Hanson and
Puja (1997), magnetoelectroelastic fields can be obtained as follows:

U ¼ � 3
a3
X4
j¼1

ðPzdj þ QkjÞfx½zj#1ðnjÞ � aI11	 þ iy½zj#2ðnjÞ � aI12	g;

wm ¼ 3

2a3
X4
j¼1

ðPzdj þ QkjÞsjkmjfa2F ðuj; eÞ � x2#1ðnjÞ � y2#2ðnjÞ � z2j#3ðnjÞg;

r1 ¼ � 6
a3
X4
j¼1

ðPzdj þ QkjÞðc66 � x1js2j Þzj#3ðnjÞ;

r2 ¼ � 6c66
a4

X4
j¼1

ðPzdj þ QkjÞfazj½#1ðnjÞ � #2ðnjÞ	 þ x2I8 � y2I3 þ a2ðI12 � I11Þ þ i2xyI4g;

rzm ¼ � 3
a3
X4
j¼1

ðPzdj þ QkjÞxmjzj#3ðnjÞ;

szm ¼ � 3
a3
X4
j¼1

ðPzdj þ QkjÞsjxmj½x#1ðnjÞ þ iy#2ðnjÞ	;

ð49Þ

where nj ðj ¼ 1; 2; 3; 4Þ are the complex elliptical coordinates which can be obtained by replacing z with zj in
Eq. (44) and satisfy 16Reðn2j Þ < 1; F ðuj; eÞðj ¼ 1; 2; 3; 4Þ are the incomplete elliptic integrals of the first
kind; uj ðj ¼ 1; 2; 3; 4Þ and In ðn ¼ 3; 4; 8; 11; 12Þ are listed in Appendix A of Hanson and Puja (1997); #kðnjÞ
(k ¼ 1; 2; 3; j ¼ 1; 2; 3; 4) are same with wkðnjÞðk ¼ 1; 2; 3Þ in Appendix A of Hanson and Puja (1997).

5.2. Solutions for friction contact

When bodies and are also subjected to tangential loading causing them to slide on the surfaces of

each other, it is assumed that the sliding friction could be determined by Coulomb friction law. Similarly,
substituting following equation into Eq. (33)

P ¼ 3Pzf
2pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20 cos2 /0

a2
� r20 sin

2 /0
b2

s
r0 dr0 d/0; f ¼ fx þ ify ð50Þ

and integrating the result over 06 r06Cð/0Þ, 06/06 2p, the displacement functions become

w0ðr;/; zÞ ¼ i
3PzG0
2pab

ðf �DD � �ffDÞ½z0Rðr;/; z0Þ � Iðr;/; z0Þ	

wjðr;/; zÞ ¼
3PzGj

2pab
ðf �DD þ �ffDÞ½zjRðr;/; zjÞ � Iðr;/; zjÞ	;

ð51Þ
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where Rðr;/; zjÞ is defined in Eq. (48), and Iðr;/; zjÞ is

Iðr;/; zjÞ ¼
Z 2p

0

Z Cð/0Þ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20 cos2 /0

a2
� r20 sin

2 /0
b2

s
Rjr0 dr0 d/0; ð52Þ

where Rj are expressed in Eq. (32). Substituting Eq. (51) into Eq. (13) and with using of the partial de-
rivatives of Rðr;/; zjÞ and Iðr;/; zjÞ given by Hanson and Puja (1997), we obtain the magnetoelectroelastic
field as follows:

U ¼ 3Pz
2a4

X4
j¼1

Gjf�fa½a2F ðuj; eÞ � x2#1ðnjÞ � y2#2ðnjÞ � z2j#3ðnjÞ	

þ �ff ½aða2 � z2j Þ#1ðnjÞ þ aðz2j � b2Þ#2ðnjÞ � 3ay2I1 þ aðy2 � x2ÞI2

þ 2y2zjI3 � 2x2zjI8 þ 3ax2I9 þ 2a2zjðI11 � I12Þ þ i4xyðaI2 � zjI4Þ	g

� 3Pz
2a4

G0f�fa½a2F ðu0; eÞ � x2#1ðn0Þ � y2#2ðn0Þ � z20#3ðn0Þ	

� �ff ½aða2 � z20Þ#1ðn0Þ þ a½z20 � a2ð1� e2Þ	#2ðn0Þ � 3ay2I1 þ aðy2 � x2ÞI2

þ 2y2z0I3 � 2x2z0I8 þ 3ax2I9 þ 2a2z0ðI11 � I12Þ þ i4xyðaI2 � z0I4Þ	g;

wm ¼ � 6Pz
a3
X4
j¼1

Gjsjkmjfxfx½zj#1ðnjÞ � aI11	 þ yfy ½zj#2ðnjÞ � aI12	g;

r1 ¼
12Pz
a3

X4
j¼1

Gjðc66 � x1js2j Þ½xfx#1ðnjÞ þ yfy#2ðnjÞ	;

r2 ¼
6c66Pz
a4

X4
j¼1

Gj fa½x#1ðnjÞ
n

þ iy#2ðnjÞ	 þ �ff
x
a
f3a2ðI9

h
� I2Þ þ 3azjðI4 � I8Þ � x2I10 þ 3y2I6g

þ i y
a
f3a2ðI2 � I1Þ þ 3azjðI3 � I4Þ � 3x2I7 þ y2I5g

io
� 6c66Pz

a4
G0
n
fa½x#1ðn0Þ þ iy#2ðn0Þ	

� �ff
x
a
f3a2ðI9

h
� I2Þ þ 3az0ðI4 � I8Þ � x2I10 þ 3y2I6g þ i

y
a
f3a2ðI2 � I1Þ þ 3az0ðI3 � I4Þ

� 3x2I7 þ y2I5g
io

;

rzm ¼ 6Pz
a3
X4
j¼1

Gjxmj½xfx#1ðnjÞ þ yfy#2ðnjÞ	;

szm ¼ 3Pz
a4
X4
j¼1

Gjsjxmjffazj#3ðnjÞ � �ff ½azjf#1ðnjÞ � #2ðnjÞg � a2ðI11 � I12Þ þ x2I8 � y2I3 þ i2xyI4	g

� 3Pz
a4
G0s0qmffaz0#3ðn0Þ þ �ff ½az0f#1ðn0Þ � #2ðn0Þg � a2ðI11 � I12Þ þ x2I8 � y2I3 þ i2xyI4	g;

ð53Þ
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where F ðuj; eÞ and nj (j ¼ 0; 1; 2; 3; 4) are same as what they are in Eq. (49); uj (j ¼ 1; 2; 3; 4) and In
(n ¼ 1; 2; 3; . . . ; 12) are listed in Appendices A and B in Hanson and Puja (1997). And #kðnjÞ (k ¼ 1; 2; 3;
j ¼ 1; 2; 3; 4) are same as those of Eq. (49).

5.3. Numerical results for smooth elliptical contact

Assume e ¼ 3=5 and suppose only force Pz acts on a body contacting with purely elastic, piezoelectric and
magnetoelectroelastic half-spaces, respectively, which are assumed to be with the same elastic, piezoelectric
and dielectric constants. The elastic and electric fields in the purely elastic, piezoelectric and magneto-

electroelastic half-spaces are compared to each other in Figs. 2–5 based on Hanson and Puja (1997); Ding

et al. (2000) and Eq. (49), respectively. In addition, the magnetic components in the magnetoelectroelastic

half-space are also shown in the figures. The material constants of magnetoelectroelastic half-space are

shown in Table 1.

Symbols in figures are defined as follows:

nrx ¼
rx
pm

; nry ¼
ry
pm

; nrz ¼
rz
pm

; ns1 ¼
s1
pm

; pm ¼ Pz
pab

;

nU ¼ U
Um

; nDx ¼
Dx

Dm
; nDy ¼

Dy

Dm
; nDz ¼

Dz

Dm
; Um ¼ Pz

a
 102 ; Dm ¼ Pz
a2 
 1010 ;

nW ¼ W
Wm

; nBx ¼
Bx
Bm

; nBy ¼
By
Bm

; nBz ¼
Bz
Bm

; Wm ¼ Pz
a
 105 ; Bm ¼ Pz

a2 
 1010 ;

ð54Þ

where s1 ¼ ðrmax � rminÞ=2 is the maximum shear stress at a point.
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Fig. 2. Elastic field on the half-major axis of contact ellipse.
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From above-mentioned figures, we can see that the elastic and electric fields in the magneto-

electroelastic half-space are similar with those of corresponding piezoelectric and purely elastic half-

space.

1. For the three kinds of half-space, the points on the major axis of the elliptical contact region are nearly

all in the state of being pressed at three orthogonal directions. The greatest value of normal stresses for

magnetoelectroelastic half-space is larger than that of corresponding piezoelectric and purely elastic half-

spaces, and all occur at the center of contact ellipse.

2. The greatest maximum shear stress in magnetoelectroelastic half-space is ns1 ¼ 0:4989pm and occurs in
the symmetric axis at the depth of z ¼ 0:46a. The greatest maximum shear stress in piezoelectric half-
space is ns1 ¼ 0:5006pm and occurs in the symmetric axis at the depth of z ¼ 0:44a. The greatest maxi-
mum shear stress in purely elastic half-space is ns1 ¼ 0:4527pm and also occurs in the symmetric axis
at the depth of z ¼ 0:44a.

3. The greatest electric displacement Dz in magnetoelectroelastic half-space is
nDz ¼ �0:2159Dm and occurs

in the symmetric axis at the depth of z ¼ 0:36a. The greatest electric displacement Dz in piezoelectric half-

space is nDz ¼ �0:2177Dm and occurs in the symmetric axis at the depth of z ¼ 0:36a. The Dx reach the

peak values of nDx ¼ 0:6178Dm and
nDx ¼ 0:6211Dm at the point of ða; 0; 0Þ of magnetoelectroelastic and

piezoelectric half-spaces, respectively.

4. The greatest magnetic induction nBz in magnetoelectroelastic half-space is nBz ¼ 1:9566Bm and occurs in
the symmetric axis at the depth of z ¼ 0:02a. The Bx reach the peak values of nBx ¼ 7:5141Bm at the point
of ða; 0; 0Þ of magnetoelectroelastic half-spaces.
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Fig. 3. Electromagnetic field on the half-major axis of contact ellipse.
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In additions, calculations also show us that there are nrz ¼ nszx ¼ nszy ¼ 0 on the border of elliptical
contact region and the maximum and minimum principle stresses in the xoy plane are contrary sign
and equal in values, so every point on this border is actually in the state of pure shear for three kinds of

half-spaces. The stress distributions on the minor axis of contact ellipse is similar to those on the major axis

for three kinds of half-spaces and so does the electromagnetic field on the minor axis for magnetoelec-

troelastic and piezoelectric half-spaces. In addition, there are nDy ¼ nDz ¼ 0 on the major axis,
nDx ¼ nDz ¼ 0 and nBx ¼ nBz ¼ 0 on the minor axis, nDz ¼ 0 and nBz ¼ 0 on the elliptical contact border and
nDx ¼ nDy ¼ 0 and nBx ¼ nBy ¼ 0 on the symmetric axis for magnetoelectroelastic and piezoelectric half-
spaces.
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Appendix A

akðk ¼ 1; 2; 3; 4; 5Þ in Eq. (11) are defined as follows:
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Table 1

Physical constants of magnetoelectroelastic material (refer to Li (2000))

c11 c12 c13 c33 c44 g11
2.86
 1011 1.73
 1011 1.70
 1011 2.695
 1011 4.53
 1010 5.0
 10�12
e15 e31 e33 e11 e33 g33
11.6 )4.4 18.6 8.0
 10�11 9.3
 10�11 3.0
 10�12
d15 d31 d33 l11 l33
550 580.3 699.7 )5.90
 10�4 1.57
 10�4

Units: elastic constants, Nm�2; piezoelectric constants, Cm�2; piezomagnetic constants, NA�1 m�1; dielectric constants, C2 N�1 m�2;

electromagnetic constants, N sV�1 C�1; magnetic constants, N s2 C�2.
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a1 ¼ c44½c33ðe33l33 � g233Þ � 2e33g33d33 þ l33e
2
33 þ e33d233	;

a2 ¼ c11½c33ðe33l33 � g233Þ � 2e33g33d33 þ l33e
2
33 þ e33d233	 þ c44½c44ðe33l33 � g233Þ

þ c33ðe11l33 þ e33l11 � 2g11g33Þ � 2e15g33d33 � 2e33ðg11d33 þ g33d15Þ

þ ðl11e233 þ 2l33e15e33Þ þ ðe11d233 þ 2e33d15d33Þ	

� ðc13 þ c44Þ½ðc13 þ c44Þðe33l33 � g233Þ þ ðe15 þ e31Þðe33l33 � d33g33Þ

� ðd15 þ d31Þðe33g33 � d33e33Þ	 � ðe15 þ e31Þ½ðc13 þ c44Þðe33l33 � g33d33Þ

� ðe15 þ e31Þðc33l33 þ d233Þ þ ðd15 þ d31Þðc33g33 þ d33e33Þ	

� ðd15 þ d31Þ½ðc13 þ c44Þð�e33g33 þ e33d33Þ þ ðe15 þ e31Þðc33g33 þ e33d33Þ

� ðd15 þ d31Þðc33e33 þ e233Þ	;

a3 ¼ c11½c44ðe33l33 � g233Þ þ c33ðe11l33 þ e33l11 � 2g11g33Þ � 2e15g33d33

� 2e33ðg11d33 þ g33d15Þ þ ðl11e233 þ 2l33e15e33Þ þ ðe11d233 þ 2e33d15d33Þ	

þ c44½c44ðe11l33 þ e33l11 � 2g11g33Þ þ c33ðe11l11 � g211Þ � 2e15ðg11d33 þ g33d15Þ

� 2e33g11d15 þ 2l11e15e33 þ l33e
2
15 þ 2e11d15d33 þ e33d215	

� ðc13 þ c44Þ½ðc13 þ c44Þðe11l33 þ e33l11 � 2g11g33Þ þ ðe15 þ e31Þ


 ðe15l33 þ e33l11 � d15g33 � d33g11Þ � ðd15 þ d31Þðe15g33 þ e33g11 � d15e33 � d33e11Þ	

� ðe15 þ e31Þ½ðc13 þ c44Þðe15l33 þ e33l11 � g11d33 � g33d15Þ

� ðe15 þ e31Þðc44l33 þ c33l11 þ 2d15d33Þ þ ðd15 þ d31Þ


 ðc44g33 þ c33g11 þ d15e33 þ d33e15Þ	

� ðd15 þ d31Þ½ðc13 þ c44Þð�e15g33 � e33g11 þ e11d33 þ e33d15Þ

þ ðe15 þ e31Þðc44g33 þ c33g11 þ e15d33 þ e33d15Þ

� ðd15 þ d31Þðc44e33 þ c33e11 þ 2e15e33Þ	;

a4 ¼ c11½c44ðe11l33 þ e33l11 � 2g11g33Þ þ c33ðe11l11 � g211Þ � 2e15ðg11d33 þ g33d15Þ

� 2e33g11d15 þ 2l11e15e33 þ l33e
2
15 þ 2e11d15d33 þ e33d215	

þ c44½c44ðe11l11 � g211Þ � 2e15g11d15 þ l11e
2
15 þ e11d215	

� ðc13 þ c44Þ½ðc13 þ c44Þðe11l11 � g211Þ þ ðe15 þ e31Þðe15l11 � d15g11Þ

� ðd15 þ d31Þðe15g11 � d15e11Þ	 � ðe15 þ e31Þ½ðc13 þ c44Þðe15l11 � g11d15Þ

� ðe15 þ e31Þðc44l11 þ d215Þ þ ðd15 þ d31Þðc44g11 þ d15e15Þ	

� ðd15 þ d31Þ½ðc13 þ c44Þð�e15g11 þ e11d15Þ þ ðe15 þ e31Þðc44g11 þ e15d15Þ

� ðd15 þ d31Þðc44e11 þ e215Þ	;

a5 ¼ c11½c44ðe11l11 � g211Þ � 2e15g11d15 þ l11e
2
15 þ e11d215	:

ðA:1Þ
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Appendix B

n1, n2, n3, m4m, m5m, m6m and m7m ðm ¼ 1; 2; 3Þ in Eq. (15) are defined as follows:

n1 ¼ ðc13 þ c44Þðe11l11 � g211Þ þ ðe15 þ e31Þðe15l11 � g11d15Þ � ðd15 þ d31Þðe15g11 � e11d15Þ;
n2 ¼ ðc13 þ c44Þðe11l33 þ e33l11 � 2g11g33Þ þ ðe15 þ e31Þðe15l33 þ e33l11 � g11d33 � g33d15Þ

� ðd15 þ d31Þðe15g33 þ e33g11 � e11d33 � e33d15Þ;
n3 ¼ ðc13 þ c44Þðe33l33 � g233Þ þ ðe15 þ e31Þðe33l33 � g33d33Þ � ðd15 þ d31Þðe33g33 � e33d33Þ;
n41 ¼ c11ðe11l11 � g211Þ;
n51 ¼ c11ðe11l33 þ e33l11 � 2g11g33Þ þ c44ðe11l11 � g211Þ þ l11ðe15 þ e31Þ2 þ e11ðd15 þ d31Þ2

� 2g11ðe15 þ e31Þðd15 þ d31Þ;
n61 ¼ c11ðe33l33 � g233Þ þ c44ðe11l33 þ e33l11 � 2g11g33Þ þ l33ðe15 þ e31Þ2 þ e33ðd15 þ d31Þ2

� 2g33ðe15 þ e31Þðd15 þ d31Þ;
n71 ¼ c44ðe33l33 � g233Þ;
n42 ¼ c11ðe15l11 � g11d15Þ;
n52 ¼ c11ðe15l33 þ e33l11 � g11d33 � g33d15Þ þ c44ðe15l11 � g11d15Þ

� ðe15 þ e31Þ½l11ðc13 þ c44Þ þ d15ðd15 þ d31Þ	 þ ðd15 þ d31Þ½g11ðc13 þ c44Þ þ e15ðd15 þ d31Þ	;
n62 ¼ c11ðe33l33 � g33d33Þ þ c44ðe15l33 þ e33l11 � g11d33 � g33d15Þ

� ðe15 þ e31Þ½l33ðc13 þ c44Þ þ d33ðd15 þ d31Þ	 þ ðd15 þ d31Þ½g33ðc13 þ c44Þ þ e33ðd15 þ d31Þ	;
n72 ¼ c44ðe33l33 � g33d33Þ;
n43 ¼ c11ð�e15g11 þ e11d15Þ;
n53 ¼ c11ð�e15g33 � e33g11 þ e11d33 þ e33d15Þ þ c44ð�e15g11 þ e11d15Þ

þ ðe15 þ e31Þ½g11ðc13 þ c44Þ þ d15ðe15 þ e31Þ	 � ðd15 þ d31Þ½e11ðc13 þ c44Þ þ e15ðe15 þ e31Þ	;
n63 ¼ c11ð�e33g33 þ e33d33Þ þ c44ð�e15g33 � e33g11 þ e11d33 þ e33d15Þ

þ ðe15 þ e31Þ½g33ðc13 þ c44Þ þ d33ðe15 þ e31Þ	 � ðd15 þ d31Þ½e33ðc13 þ c44Þ þ e33ðe15 þ e31Þ	;
n73 ¼ c44ð�e33g33 þ e33d33Þ:

ðB:1Þ
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